CVE-2025-53770 反序列化漏洞

漏洞信息

漏洞名称: CVE-2025-53770 反序列化漏洞

漏洞编号:

  • CVE: CVE-2025-53770

漏洞类型: 反序列化

漏洞等级: 高危

漏洞描述: CVE-2025-53770是一个与不安全反序列化相关的安全漏洞,属于CWE-502(反序列化不可信数据)类别。该漏洞允许攻击者通过构造恶意的序列化数据,在目标系统上执行远程代码,从而可能导致严重的安全问题。

受影响产品: 该漏洞主要影响使用Java序列化框架(如ObjectInputStreamBinaryFormatter)或其他不安全反序列化实践(如pickle.loadsyaml.load)的应用服务器和应用程序。这些产品通常部署在企业环境中,用于提供各种网络服务。

漏洞解释: 漏洞的根本原因在于应用程序在反序列化过程中未对输入数据进行充分的验证和过滤,导致攻击者可以注入恶意的序列化对象。当这些对象被反序列化时,攻击者可以在目标系统上执行任意代码。这种类型的漏洞通常由于开发者在实现序列化和反序列化功能时,未能遵循安全最佳实践所致。

影响分析: 该漏洞的安全风险极高,攻击者可以利用它进行远程代码执行,从而完全控制受影响的系统。此外,由于反序列化操作通常不需要用户认证,攻击者可以无需任何权限即可利用此漏洞。这意味着漏洞可以被自动化工具大规模利用,对企业和组织的网络安全构成严重威胁。为了防止此类攻击,建议立即应用相关的安全补丁,并对所有输入数据进行严格的验证和过滤。

来源: https://github.com/daryllundy/CVE-2025-53770

类型: CVE-2025:github search

仓库文件

  • .claude
  • .gitignore
  • CLAUDE.md
  • DETECTION_ALGORITHMS.md
  • LIBRARIES.md
  • NOTES.md
  • PROJ_NOTES.md
  • README.md
  • TASKS.md
  • TODO.md
  • detectors
  • pyproject.toml
  • testing
  • uv.lock

来源概述

CVE-2025-53770 Detection Project

A comprehensive vulnerability detection toolkit for identifying systems vulnerable to CVE-2025-53770 (CWE-502: Deserialization of Untrusted Data).

🔍 Overview

This project provides enterprise-ready detection scripts to identify and assess systems potentially vulnerable to CVE-2025-53770, a security vulnerability related to unsafe deserialization of untrusted data. The toolkit includes both PowerShell and Python implementations for maximum compatibility across different environments.

Vulnerability Details

  • CVE ID: CVE-2025-53770
  • CWE Classification: CWE-502 (Deserialization of Untrusted Data)
  • Severity: Variable (depends on implementation and exposure)
  • Description: Vulnerability in deserialization processes that can lead to remote code execution

🚀 Quick Start

PowerShell Detector

1
2
3
4
5
## Basic scan
.\detectors\detector.ps1 -TargetRange "192.168.1.1-50"

## Scan with output file and verbose logging
.\detectors\detector.ps1 -TargetRange "192.168.1.0/24" -OutputFile "results.json" -Verbose

Python Detector

1
2
3
4
5
6
7
8
9
10
11
## Install with uv (recommended)
uv sync

## Basic scan
uv run python detectors/detector.py --target-range "192.168.1.1-50"

## Scan with output file and verbose logging
uv run python detectors/detector.py --target-range "10.0.0.0/24" --output results.json --verbose

## Or use the installed script
uv run cve-2025-53770-detect --target-range "192.168.1.1-50"

📁 Project Structure

1
2
3
4
5
6
7
8
9
10
11
12
CVE-2025-53770/
├── README.md # Project documentation
├── CLAUDE.md # Claude Code instructions
├── NOTES.md # Reference links and resources
├── TASKS.md # Project task tracking
├── TODO.md # Prioritized backlog
├── DETECTION_ALGORITHMS.md # Pseudocode and algorithm documentation
├── LIBRARIES.md # External dependencies documentation
└── detectors/ # Detection scripts
├── detector.ps1 # PowerShell implementation
├── detector.py # Python implementation
└── requirements.txt # Python dependencies

🛠️ Installation & Setup

Prerequisites

PowerShell
  • PowerShell 5.1+ or PowerShell Core 7.0+
  • No additional dependencies required
Python
  • Python 3.8+
  • uv package manager (recommended) or pip
  • aiohttp library for async HTTP operations

Installation Steps

  1. Install uv (if not already installed)

    1
    2
    3
    4
    5
    6
    7
    8
    # On macOS and Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh

    # On Windows
    powershell -c "irm https://astral.sh/uv/install.ps1 | iex"

    # Alternative: use pip
    pip install uv
  2. Clone the repository

    1
    2
    git clone <repository-url>
    cd CVE-2025-53770
  3. Install Python dependencies

    1
    2
    3
    4
    5
    6
    7
    8
    9
    # Install all dependencies (recommended)
    uv sync

    # Or install specific groups
    uv sync --group testing
    uv sync --group dev

    # Alternative with pip (if uv not available)
    pip install -e .
  4. Verify installation

    1
    2
    3
    4
    5
    6
    # Test Python detector
    uv run python detectors/detector.py --help
    uv run cve-2025-53770-detect --help

    # Test PowerShell detector
    Get-Help .\detectors\detector.ps1

📖 Usage Guide

PowerShell Detector (detector.ps1)

Parameters
  • TargetRange (Required): IP range to scan
    • Single IP: "192.168.1.100"
    • IP range: "192.168.1.1-50"
    • CIDR notation: "192.168.1.0/24" (basic support)
  • OutputFile (Optional): Path to save JSON results
  • Verbose (Optional): Enable detailed logging
Examples
1
2
3
4
5
## Scan single subnet with verbose output
.\detector.ps1 -TargetRange "192.168.1.1-254" -Verbose

## Enterprise scan with results export
.\detector.ps1 -TargetRange "10.0.0.1-100" -OutputFile "enterprise_scan.json"

Python Detector (detector.py)

Arguments
  • --target-range, -t (Required): IP range to scan
  • --output, -o (Optional): Output file for JSON results
  • --verbose, -v (Optional): Enable verbose logging
Examples
1
2
3
4
5
6
7
8
## Comprehensive network scan
uv run python detectors/detector.py --target-range "192.168.0.0/24" --verbose

## Targeted scan with results export
uv run python detectors/detector.py -t "10.0.1.1-50" -o vulnerability_report.json

## Using the installed command
uv run cve-2025-53770-detect --target-range "192.168.0.0/24" --output scan_results.json

🔧 Detection Methodology

Scanning Process

  1. Network Discovery: Port scanning on common HTTP/HTTPS ports (80, 443, 8080, 8443, etc.)
  2. HTTP Probing: Analyze HTTP responses, headers, and content
  3. Pattern Detection: Search for deserialization frameworks and unsafe practices
  4. Risk Assessment: Score vulnerabilities based on multiple indicators
  5. Report Generation: Structured JSON output with detailed findings

Detection Patterns

The detectors identify:

  • Java serialization frameworks (ObjectInputStream, BinaryFormatter)
  • Unsafe deserialization patterns (pickle.loads, yaml.load)
  • Application servers with known deserialization issues
  • Missing input validation indicators
  • Suspicious HTTP headers and content types

Risk Scoring

  • Score 0-49: Low risk (informational findings)
  • Score 50-69: Medium risk (potential vulnerability)
  • Score 70+: High risk (likely vulnerable)

📊 Output Format

Both detectors generate structured JSON reports:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
{
"scan_metadata": {
"cve_id": "CVE-2025-53770",
"scan_date": "2025-07-28T10:30:00Z",
"scanner_version": "Python-1.0",
"target_range": "192.168.1.1-50",
"total_vulnerabilities": 3,
"total_high_severity": 1,
"total_medium_severity": 2,
"total_low_severity": 0
},
"vulnerabilities": [
{
"timestamp": "2025-07-28T10:30:15Z",
"target": {
"ip_address": "192.168.1.100",
"port": 8080
},
"vulnerability": {
"cve_id": "CVE-2025-53770",
"cwe_id": "CWE-502",
"description": "Deserialization of Untrusted Data",
"severity": "HIGH",
"score": 75,
"is_vulnerable": true
},
"findings": [
"Java application server detected: Apache Tomcat",
"Deserialization pattern detected: ObjectInputStream"
],
"technical_details": {
"probe_results": { /* HTTP response data */ },
"scan_method": "Python Async HTTP Probe"
}
}
]
}

🏢 Enterprise Deployment

Network Scanning Considerations

  • Firewall Configuration: Ensure scanning hosts can reach target networks
  • Rate Limiting: Built-in timeouts prevent network flooding
  • Authentication: No credentials required for detection scanning
  • Logging: Comprehensive logging for audit trails

Integration Options

  • SIEM Integration: JSON output compatible with major SIEM platforms
  • CI/CD Pipelines: Automated vulnerability scanning in deployment workflows
  • Scheduled Scanning: Use with cron/Task Scheduler for regular assessments
  • Reporting Dashboards: Parse JSON results for executive reporting

Security Considerations

  • Read-Only Operation: Detectors only perform reconnaissance, no exploitation
  • Network Impact: Minimal network traffic, non-intrusive scanning
  • Data Privacy: No sensitive data collection or storage
  • False Positives: Risk scoring helps prioritize genuine vulnerabilities

🛡️ Remediation Guidance

Immediate Actions

  1. Inventory Systems: Use detection results to identify vulnerable systems
  2. Network Segmentation: Isolate vulnerable systems if possible
  3. Patch Management: Apply vendor security updates for identified systems
  4. Monitoring: Implement enhanced logging for deserialization activities

Long-Term Security Measures

  1. Input Validation: Implement strict validation for all user inputs
  2. Secure Deserialization: Use safe deserialization libraries and practices
  3. Network Security: Deploy WAF rules to block malicious serialized payloads
  4. Security Training: Educate developers on secure coding practices

📚 Documentation

🔗 References

📋 System Requirements

PowerShell Environment

  • OS: Windows 10+, Windows Server 2016+, or any OS with PowerShell Core
  • PowerShell: Version 5.1+ or PowerShell Core 7.0+
  • Network: Outbound connectivity to target ranges
  • Permissions: Standard user permissions (no admin required)

Python Environment

  • OS: Windows, Linux, macOS
  • Python: Version 3.8+
  • Memory: Minimum 512MB RAM for large network scans
  • Network: Outbound connectivity to target ranges
  • Package Manager: uv (recommended) or pip
  • Dependencies: aiohttp (managed via pyproject.toml)

🚨 Disclaimer

This tool is designed for defensive security purposes only. It should only be used:

  • On networks you own or have explicit permission to scan
  • For vulnerability assessment and security testing
  • By security professionals and system administrators
  • In compliance with applicable laws and regulations

The authors are not responsible for any misuse of this tool.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/improvement)
  3. Commit your changes (git commit -am 'Add new feature')
  4. Push to the branch (git push origin feature/improvement)
  5. Create a Pull Request

📞 Support

For issues, questions, or contributions:

  • Create an issue in the project repository
  • Review existing documentation in the /docs folder
  • Check the troubleshooting section in project documentation

Last Updated: July 28, 2025
Version: 1.0.0
Maintainer: Security Research Team


CVE-2025-53770 反序列化漏洞
http://example.com/2025/07/28/github_4137756665/
作者
lianccc
发布于
2025年7月28日
许可协议