CVE-2025-53770 反序列化漏洞
漏洞信息
漏洞名称: CVE-2025-53770 反序列化漏洞
漏洞编号:
- CVE: CVE-2025-53770
漏洞类型: 反序列化
漏洞等级: 高危
漏洞描述: CVE-2025-53770是一个与不安全反序列化相关的安全漏洞,属于CWE-502(反序列化不可信数据)类别。该漏洞允许攻击者通过构造恶意的序列化数据,在目标系统上执行远程代码,从而可能导致严重的安全问题。
受影响产品: 该漏洞主要影响使用Java序列化框架(如ObjectInputStream
、BinaryFormatter
)或其他不安全反序列化实践(如pickle.loads
、yaml.load
)的应用服务器和应用程序。这些产品通常部署在企业环境中,用于提供各种网络服务。
漏洞解释: 漏洞的根本原因在于应用程序在反序列化过程中未对输入数据进行充分的验证和过滤,导致攻击者可以注入恶意的序列化对象。当这些对象被反序列化时,攻击者可以在目标系统上执行任意代码。这种类型的漏洞通常由于开发者在实现序列化和反序列化功能时,未能遵循安全最佳实践所致。
影响分析: 该漏洞的安全风险极高,攻击者可以利用它进行远程代码执行,从而完全控制受影响的系统。此外,由于反序列化操作通常不需要用户认证,攻击者可以无需任何权限即可利用此漏洞。这意味着漏洞可以被自动化工具大规模利用,对企业和组织的网络安全构成严重威胁。为了防止此类攻击,建议立即应用相关的安全补丁,并对所有输入数据进行严格的验证和过滤。
来源: https://github.com/daryllundy/CVE-2025-53770
类型: CVE-2025:github search
仓库文件
- .claude
- .gitignore
- CLAUDE.md
- DETECTION_ALGORITHMS.md
- LIBRARIES.md
- NOTES.md
- PROJ_NOTES.md
- README.md
- TASKS.md
- TODO.md
- detectors
- pyproject.toml
- testing
- uv.lock
来源概述
CVE-2025-53770 Detection Project
A comprehensive vulnerability detection toolkit for identifying systems vulnerable to CVE-2025-53770 (CWE-502: Deserialization of Untrusted Data).
🔍 Overview
This project provides enterprise-ready detection scripts to identify and assess systems potentially vulnerable to CVE-2025-53770, a security vulnerability related to unsafe deserialization of untrusted data. The toolkit includes both PowerShell and Python implementations for maximum compatibility across different environments.
Vulnerability Details
- CVE ID: CVE-2025-53770
- CWE Classification: CWE-502 (Deserialization of Untrusted Data)
- Severity: Variable (depends on implementation and exposure)
- Description: Vulnerability in deserialization processes that can lead to remote code execution
🚀 Quick Start
PowerShell Detector
1 |
|
Python Detector
1 |
|
📁 Project Structure
1 |
|
🛠️ Installation & Setup
Prerequisites
PowerShell
- PowerShell 5.1+ or PowerShell Core 7.0+
- No additional dependencies required
Python
- Python 3.8+
- uv package manager (recommended) or pip
- aiohttp library for async HTTP operations
Installation Steps
Install uv (if not already installed)
1
2
3
4
5
6
7
8# On macOS and Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# On Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# Alternative: use pip
pip install uvClone the repository
1
2git clone <repository-url>
cd CVE-2025-53770Install Python dependencies
1
2
3
4
5
6
7
8
9# Install all dependencies (recommended)
uv sync
# Or install specific groups
uv sync --group testing
uv sync --group dev
# Alternative with pip (if uv not available)
pip install -e .Verify installation
1
2
3
4
5
6# Test Python detector
uv run python detectors/detector.py --help
uv run cve-2025-53770-detect --help
# Test PowerShell detector
Get-Help .\detectors\detector.ps1
📖 Usage Guide
PowerShell Detector (detector.ps1
)
Parameters
TargetRange
(Required): IP range to scan- Single IP:
"192.168.1.100"
- IP range:
"192.168.1.1-50"
- CIDR notation:
"192.168.1.0/24"
(basic support)
- Single IP:
OutputFile
(Optional): Path to save JSON resultsVerbose
(Optional): Enable detailed logging
Examples
1 |
|
Python Detector (detector.py
)
Arguments
--target-range, -t
(Required): IP range to scan--output, -o
(Optional): Output file for JSON results--verbose, -v
(Optional): Enable verbose logging
Examples
1 |
|
🔧 Detection Methodology
Scanning Process
- Network Discovery: Port scanning on common HTTP/HTTPS ports (80, 443, 8080, 8443, etc.)
- HTTP Probing: Analyze HTTP responses, headers, and content
- Pattern Detection: Search for deserialization frameworks and unsafe practices
- Risk Assessment: Score vulnerabilities based on multiple indicators
- Report Generation: Structured JSON output with detailed findings
Detection Patterns
The detectors identify:
- Java serialization frameworks (
ObjectInputStream
,BinaryFormatter
) - Unsafe deserialization patterns (
pickle.loads
,yaml.load
) - Application servers with known deserialization issues
- Missing input validation indicators
- Suspicious HTTP headers and content types
Risk Scoring
- Score 0-49: Low risk (informational findings)
- Score 50-69: Medium risk (potential vulnerability)
- Score 70+: High risk (likely vulnerable)
📊 Output Format
Both detectors generate structured JSON reports:
1 |
|
🏢 Enterprise Deployment
Network Scanning Considerations
- Firewall Configuration: Ensure scanning hosts can reach target networks
- Rate Limiting: Built-in timeouts prevent network flooding
- Authentication: No credentials required for detection scanning
- Logging: Comprehensive logging for audit trails
Integration Options
- SIEM Integration: JSON output compatible with major SIEM platforms
- CI/CD Pipelines: Automated vulnerability scanning in deployment workflows
- Scheduled Scanning: Use with cron/Task Scheduler for regular assessments
- Reporting Dashboards: Parse JSON results for executive reporting
Security Considerations
- Read-Only Operation: Detectors only perform reconnaissance, no exploitation
- Network Impact: Minimal network traffic, non-intrusive scanning
- Data Privacy: No sensitive data collection or storage
- False Positives: Risk scoring helps prioritize genuine vulnerabilities
🛡️ Remediation Guidance
Immediate Actions
- Inventory Systems: Use detection results to identify vulnerable systems
- Network Segmentation: Isolate vulnerable systems if possible
- Patch Management: Apply vendor security updates for identified systems
- Monitoring: Implement enhanced logging for deserialization activities
Long-Term Security Measures
- Input Validation: Implement strict validation for all user inputs
- Secure Deserialization: Use safe deserialization libraries and practices
- Network Security: Deploy WAF rules to block malicious serialized payloads
- Security Training: Educate developers on secure coding practices
📚 Documentation
- DETECTION_ALGORITHMS.md: Detailed pseudocode and algorithm documentation
- LIBRARIES.md: External dependencies and library documentation
- TASKS.md: Project development tasks and milestones
- TODO.md: Prioritized development backlog
- NOTES.md: Reference links and resources
🔗 References
- Microsoft Security Response Center - CVE-2025-53770
- CVE.org Record - CVE-2025-53770
- CWE-502: Deserialization of Untrusted Data
📋 System Requirements
PowerShell Environment
- OS: Windows 10+, Windows Server 2016+, or any OS with PowerShell Core
- PowerShell: Version 5.1+ or PowerShell Core 7.0+
- Network: Outbound connectivity to target ranges
- Permissions: Standard user permissions (no admin required)
Python Environment
- OS: Windows, Linux, macOS
- Python: Version 3.8+
- Memory: Minimum 512MB RAM for large network scans
- Network: Outbound connectivity to target ranges
- Package Manager: uv (recommended) or pip
- Dependencies: aiohttp (managed via pyproject.toml)
🚨 Disclaimer
This tool is designed for defensive security purposes only. It should only be used:
- On networks you own or have explicit permission to scan
- For vulnerability assessment and security testing
- By security professionals and system administrators
- In compliance with applicable laws and regulations
The authors are not responsible for any misuse of this tool.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/improvement
) - Commit your changes (
git commit -am 'Add new feature'
) - Push to the branch (
git push origin feature/improvement
) - Create a Pull Request
📞 Support
For issues, questions, or contributions:
- Create an issue in the project repository
- Review existing documentation in the
/docs
folder - Check the troubleshooting section in project documentation
Last Updated: July 28, 2025
Version: 1.0.0
Maintainer: Security Research Team